

Inflatable working platform \oslash 20 m

Buitink Technology developed an inflatable working platform that can be installed inside a tank.

Proof of concept has been made by a platform with a diameter of 3m. To extend this principle to a larger tank of e.g. 20m, Buitink worked out the following concept:

A dropstich fabric floor is made that is additionally supported. In this visualization it is supported by 5 inflatable columns.

JAL 330 mm E 1<			
30 m 30 m 330 m 30 m 0000 State 5100 m 01000 m 0000 m 01000 m 0000 m 01000 m 0.000 m 01000 m 0.33 m Height Dropstitch 0.33 m Pressure area 20.73 m2 Inner pressure in dropstitch 0.60 50.00 kN/m2 pressure on wall 1036.73 kN friction 0.60 safety on friction 1.50 max vertical force 41469 kN 41469.02 kg Force along boundary Radius (= half height) 0.17 m force per m/ cercumference 8.25 kN/m' due to shape, the upper and lower foil are not traveloud	WALL		
330 mm 330 mm 330 mm 330 mm 2000 m 300 mm Diameter 2000 m Circumference 62.83 m Height Dropstitch 0.33 p Pressure area 20.73 m2 Inner pressure in dropstitch 0.60 mBar 50.00 kN/m2 50.00 kN/m2 pressure on wall 1036/73 kN friction 0.60 safety on friction 1.50 max vertical force 41469.02 kg Force along boundary 8.25 kN/m² Radius (= half height) 0.17 m force per m/ cercumference 8.25 kN/m² due to shape, the upper and lower foil are not tancioned			
330 mm 2000 m Diameter 2000 m Circumference 62.83 m Height Dropstitch 0.33 pr Pressure area 20.73 m2 Inner pressure in dropstitch 50.00 MBar pressure on wall 1036.73 kN friction 0.60 safety on friction 1.50 max vertical force 41469.02 kg Force along boundary 8.25 kN/m² due to shape, the upper and lower foil are not tancioned	TE 1111111	1 11	1111111111111
Diameter 20.00 m Circumference 62.83 m Height Dropstitch 0.33 pa Pressure area 20.73 m2 Inner pressure in dropstitch 500.00 mBar pressure on wall 1036-73 kN friction 0.60 safety on friction 1.50 max vertical force 414.69 kN Force along boundary Radius (= half height) force per m/ cercumference 8.25 kN/m² due to shape, the upper and lower foil are not tensioned	330 mm (= 1111111	Pelli	
Diameter 20.00 m Circumference 62.83 m Height Dropstitch 0.33 m Pressure area 20.73 m2 Inner pressure in dropstitch 5000 kN/m2 pressure on wall 1036-73 kN friction 0.60 safety on friction 1.50 max vertical force 41469.02 kg Force along boundary 8.25 kN/m' due to shape, the upper and lower foil are not to shape, the upper and lower foil are not to shape, the upper and lower foil are not to shape.		111	
Diameter 20.00 m Circumference 62.83 m Height Dropstitch 0.33 m Pressure area 20.73 m2 Inner pressure in dropstitch 500.00 mBar 50.00 kN/m2 pressure on wall 1036-73 kN friction 0.60 safety on friction 1.50 max vertical force 414.69 kN 41469.02 kg Force along boundary Radius (= half height) 0.17 m force per m/ cercumference 8.25 kN/m' due to shape, the upper and lower foil are not to shape, the upper and lower foil are not to shape, the upper and lower foil are not to shape.			
Diameter 20.00 m Circumference 62.83 m Height Dropstitch 0.33 m Pressure area 20.73 m2 Inner pressure in dropstitch 50.00 kN/m2 pressure on wall 1036.73 kN friction 0.60 safety on friction 1.50 max vertical force 414.69 kN 41469.02 kg Force along boundary Radius (= half height) 0.17 m force per m/ cercumference 8.25 kN/m'			COLOPSAILCE XINT
Diameter 20.00 m Circumference 62.83 m Height Dropstitch 0.33 m Pressure area 20.73 m2 Inner pressure in dropstitch 5000 mBar pressure on wall 1036-73 kN friction 0.60 safety on friction 1.50 max vertical force 414.69 kN 41469.02 kg Force along boundary Radius (= half height) 0.17 m force per m/ cercumference 8.25 kN/m ¹			× 5 ¹
Diameter 20.00 m Circumference 62.83 m Height Dropstitch 0.33 m Pressure area 20.73 m2 Inner pressure in dropstitch 500.00 mBar 50.00 kN/m2 pressure on wall 1036-73 kN friction 0.60 safety on friction 1.50 max vertical force 41469 kN Force along boundary Radius (= half height) Radius (= half height) 0.17 m force per m/ cercumference 8.25 kN/m' due to shape, the upper and lower foil are not to to side			"In"
Diameter 20.00 m Circumference 62.83 m Height Dropstitch 0.33 m Pressure area 20.73 m2 Inner pressure in dropstitch 500.00 mBar 50.00 kN/m2 pressure on wall 1036-73 kN friction 0.60 safety on friction 1.50 max vertical force 414.69 kN 41469.02 kg Force along boundary Radius (= half height) 0.17 m force per m/ cercumference 8.25 kN/m' due to shape, the upper and lower foil are not to toxicocod		/	
Diameter 20.00 m Circumference 62.83 m Height Dropstitch 0.33 m Pressure area 20.73 m2 Inner pressure in dropstitch 500.00 mBar 50.00 kN/m2 pressure on wall 1036.73 kN friction 0.60 safety on friction 1.50 max vertical force 414.69 kN 41469.02 kg Force along boundary Radius (= half height) 0.17 m force per m/ cercumference 8.25 kN/m' due to shape, the upper and lower foil are not ton four standard			- Al
Diameter 20.00 m Circumference 62.83 m Height Dropstitch 0.33 m Pressure area 20.73 m2 Inner pressure in dropstitch 500.00 mBar pressure on wall 1036-73 kN friction 0.60 safety on friction 1.50 max vertical force 414.69 kN 41469.02 kg Force along boundary Radius (= half height) 0.17 m force per m/ cercumference 8.25 kN/m' due to shape, the upper and lower foil are not topicared			
Circumference 62.83 m Height Dropstitch 0.33 m Pressure area 20.73 m2 Inner pressure in dropstitch 500.00 mBar 50.00 kN/m2 pressure on wall 1036-73 kN friction 0.60 safety on friction 1.50 max vertical force 414.69 kN 41469.02 kg Force along boundary Radius (= half height) 0.17 m force per m/ cercumference 8.25 kN/m' due to shape, the upper and lower foil are not tencioned	Diameter	20.00	m
Height Dropstitch 0.33 m Pressure area 20.73 m2 Inner pressure in dropstitch 500.00 mBar 50.00 kN/m2 pressure on wall 1036.73 kN friction 0.60 safety on friction 1.50 max vertical force 414.69 kN 41469.02 kg Force along boundary Radius (= half height) 0.17 m force per m/ cercumference 8.25 kN/m' due to shape, the upper and lower foil are not tencioned	Circumference	62.83	m
Pressure area 20.73 m2 Inner pressure in dropstitch 500.00 mBar 50.00 kN/m2 pressure on wall 1036.73 kN friction 0.60 safety on friction 1.50 max vertical force 414.69 kN 41469.02 kg Force along boundary Radius (= half height) 0.17 m force per m/ cercumference 8.25 kN/m' due to shape, the upper and lower foil are not tenriored	Height Dropstitch	0.33	m
Inner pressure in dropstitch 500.00 mBar 50.00 kN/m2 pressure on wall 1036.73 kN friction 0.60 safety on friction 1.50 max vertical force 414.69 kN 41469.02 kg Force along boundary 0.17 m force per m/ cercumference 8.25 kN/m' due to shape, the upper and lower foil are not topriored topriored	Pressure area	20.73	m2
Inner pressure in dropstitch500.00 mBar50.00 kN/m2pressure on wall1036.73 kNfriction0.60safety on friction1.50max vertical force414.69 kN41469.02 kgForce along boundaryRadius (= half height)0.17 mforce per m/ cercumference8.25 kN/m'due to shape, the upper and lower foil are nottansioned		0	
50.00 kN/m2 pressure on wall 1036.73 kN friction 0.60 safety on friction 1.50 max vertical force 414.69 kN 41469.02 kg Force along boundary Radius (= half height) 0.17 m force per m/ cercumference 8.25 kN/m' due to shape, the upper and lower foil are not tonsioned	Inner pressure in dropstitch	500.00	mBar
pressure on wall 1036.73 kN friction 0.60 safety on friction 1.50 max vertical force 414.69 kN 41469.02 kg Force along boundary Radius (= half height) 0.17 m force per m/ cercumference 8.25 kN/m' due to shape, the upper and lower foil are not tonsioned		50.00	kN/m2
friction 0.60 safety on friction 1.50 max vertical force 414.69 kN 41469.02 kg Force along boundary Radius (= half height) 0.17 m force per m/ cercumference 8.25 kN/m' due to shape, the upper and lower foil are not tonsioned	pressure on wall	1036.73	kN
safety on friction 1.50 max vertical force 414.69 kN 41469.02 kg Force along boundary Radius (= half height) 0.17 m force per m/ cercumference 8.25 kN/m' due to shape, the upper and lower foil are not tonsioned	friction	0.60	
max vertical force 414.69 kN 41469.02 kg Force along boundary Radius (= half height) 0.17 m force per m/ cercumference 8.25 kN/m' due to shape, the upper and lower foil are not tonsioned	safety on friction	1.50	
41469.02 kg Force along boundary Radius (= half height) 0.17 m force per m/ cercumference 8.25 kN/m' due to shape, the upper and lower foil are not topsioned	max vertical force	414.69	kN
Force along boundary Radius (= half height) 0.17 m force per m/ cercumference 8.25 kN/m' due to shape, the upper and lower foil are not tonsioned		41469.02	kg
Radius (= half height) 0.17 m force per m/ cercumference 8.25 kN/m' due to shape, the upper and lower foil are not tensioned	Force along boundary		
force per m/ cercumference 8.25 kN/m' due to shape, the upper and lower foil are not tensioned	Radius (= half height)	0.17	m
due to shape, the upper and lower foil are not	force per m/ cercumference	8.25	kN/m'
tonsionad		due to shap	e, the upper and lower foil are not
dua ta defermation fail terrior ia	due to defermation fail to arise is	tensioned	
activated	activated		
==> foil stress shall be lower than force/m'	==> foil stress shall be lower than force/m'		

The load bearing principle of the platform exists due to the inner pressure that pushes the cirmcumfernce to the silo wall.

An inner pressure of 500mBar is chosen. The maximum inflation pressure is 2000mBar so there is a safety margin of 2000/500 = 4 on the allowable inner pressure.

With this pressure, a maximum tension force in he upper or lower layer can be reached of 8.25 kN/m'. To investigate whether the span of 20m is possible, a double layered floor panel is modelled with dropstiches to simulate the behavior.

(in blue the dropstiches are shown).

As the fabric itself is quite heavy (appr. 2 kg/m2), the platform is checked first under self weight and an inner pressure of 300 mBar.

Since the most loaded area will be at the perimeter of the platform, 8 columns are equally distributed along the perimeter at the distance of 3m from the edge. Internally another 4 columns are positioned to carry the inner part of the platform.

LC01 Inner pressure and self weight

It can be seen that the platform deforms under the selfweight,

Deformation lines shown in 5cm difference. At the perimeter there is approximately 5 cm deflection, therewith creating a comfortable working area. Toward the center of the platform, the deflection increases up to 40 cm. as this is only to cross the platform, it considered an acceptable deflection.

Membrane stresses are higher around the support points, this is acceptable. Along the perimeter the stresses are around 3 kN/m', which is failly below the maximum allowable stress level of 8.25 kN/m', resulting in a safety margin of 8.25 / 3 = 2.75

LC02 Innner pressure, self weight and equal distributed load of 10 kg/m2

Under a distributed load of 10 kg/m2, the stress in lower fabric increases. Along the perimeter this will be around 3.5 kN/m'. This gives a safety margin of 8.25/3.5 = 2.4

LC03 EG+ V + point loads

To model people walking on the platform, pointloads are introduced with a magnituede of 1.5 kN. This corresponds to a person with equipment of 150 kg. There are 23 people modelled with a total load of 3450 kg.

Along the perimeter the stresses go up to max 5 kN/m, resulting in a safety margin of 8.25 / 5 = 1.65

Conclusion:

By supporting the fabric platform at regular distances of approximately 5m, using an inner pressure of 500 mbar, results in a work platform that can be used by persons with a maximum load of 150 kg including equipment.

The inner pressure of 500 mbar generates enough compression force to the silo wall to garantuee the position of the platform in the tank.

It is advised to locate the working area within a distance of 3m from the perimeter as the platform will be the most straight in this area.

Part of the safety concept will be the life lines that are used by the persons.